Unifying the Stochastic Spectral Descent for Restricted Boltzmann Machines with Bernoulli or Gaussian Inputs
نویسنده
چکیده
Stochastic gradient descent based algorithms are typically used as the general optimization tools for most deep learning models. A Restricted Boltzmann Machine (RBM) is a probabilistic generative model that can be stacked to construct deep architectures. For RBM with Bernoulli inputs, non-Euclidean algorithm such as stochastic spectral descent (SSD) has been specifically designed to speed up the convergence with improved use of the gradient estimation by sampling methods. However, the existing algorithm and corresponding theoretical justification depend on the assumption that the possible configurations of inputs are finite, like binary variables. The purpose of this paper is to generalize SSD for Gaussian RBM being capable of modeling continuous data, regardless of the previous assumption. We propose the gradient descent methods in non-Euclidean space of parameters, via deriving the upper bounds of logarithmic partition function for RBMs based on Schatten-∞ norm. We empirically show that the advantage and improvement of SSD over stochastic gradient descent (SGD).
منابع مشابه
Stochastic Spectral Descent for Restricted Boltzmann Machines
Restricted Boltzmann Machines (RBMs) are widely used as building blocks for deep learning models. Learning typically proceeds by using stochastic gradient descent, and the gradients are estimated with sampling methods. However, the gradient estimation is a computational bottleneck, so better use of the gradients will speed up the descent algorithm. To this end, we first derive upper bounds on t...
متن کاملRestricted Boltzmann Machines with Gaussian Visible Units Guided by Pairwise Constraints
Restricted Boltzmann machines (RBMs) and their variants are usually trained by contrastive divergence (CD) learning, but the training procedure is an unsupervised learning approach, without any guidances of the background knowledge. To enhance the expression ability of traditional RBMs, in this paper, we propose pairwise constraints restricted Boltzmann machine with Gaussian visible units (pcGR...
متن کاملImproved Learning of Gaussian-Bernoulli Restricted Boltzmann Machines
We propose a few remedies to improve training of Gaussian-Bernoulli restricted Boltzmann machines (GBRBM), which is known to be difficult. Firstly, we use a different parameterization of the energy function, which allows for more intuitive interpretation of the parameters and facilitates learning. Secondly, we propose parallel tempering learning for GBRBM. Lastly, we use an adaptive learning ra...
متن کاملUnsupervised spoken word retrieval using Gaussian-bernoulli restricted boltzmann machines
The objective of this work is to explore a novel unsupervised framework, using Restricted Boltzmann machines, for Spoken Word Retrieval (SWR). In the absence of labelled speech data, SWR is typically performed by matching sequence of feature vectors of query and test utterances using dynamic time warping (DTW). In such a scenario, performance of SWR system critically depends on representation o...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کامل